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A study is made of surfaces, describing the propagation of perturbations in a plastic 
medium, described by equations proposed in [i]. A review of work in which these processes 
are investigated on the basis of other models can be found in [2], A partial case of the 
equations discussed here was proposed in [3]. The surfaces of the propagation of the waves 
are described using an acoustical matrix, which determines three waves: quasilongitudinal 
and two quasitransverse. The acoustical matrix issymmetrical and positively defined; these 
properties are determined by the required correctness (hyperbolicity) of the system of dif- 
ferential equations under consideration. The communication [4] is devoted to a description 
of a class of hyperbolic systems similar to that considered here, It is found that the 
acoustical matrix corresponding to the system of differential equations under consideration 
here, for an elasticoplastic medium, can degenerate at several surfaces. This kind of de- 
generation corresponds to the reversion to zero of the velocity of one of the quasitrans- 
verse waves. In the plane case of a system of equations linearized in some manner, these 
degenerate surfaces coincide with the slip surfaces of the classical theory of plasticity. 

The dynamic equations of an isotropic elasticoplastic medium, in the rectangular Car- 
tesian system of coordinates x i proposed in [i], have the form 

�9 p d u i / d t - - O a ~ / O x j = O ,  d h i / d t - - U ~ q = ~ U j ~ = O ~  (i) 

p E s d S / d t - - L ~ j O u i / O x i - ~ ( l ~ ) O u ~ / O x  ~ = O, 

where  d / d t  = 3/Ot  + uaO/~xa ;  u i i s  t h e v e c t o r  o f  t h e  v e l o c i t y ;  a i j  i s  t h e  t e n s o r  o f  t h e  s t r e s -  

s e s ;  h i j  i s  t h e  t e n s o r  o f  t h e  e f f e c t i v e  e l a s t i c  Hencky d e f o r m a t i o n s ;  S i s  t h e  e n t r o p y ;  p i s  

t h e  d e n s i t y .  The t e n s o r  U . .  fo rms  an o r t h o g o n a l  m a t r i x  U, r e l a t i n g  a . .  and h . .  to  t h e  p r i n -  
~J ~3 ~J cipal axes: 

o o [hi o 
llo jll = v / 0  o t u*, lib,ill = v [ 0  0 } u * ,  UU* = I .  

0 %/ \ 0 0 ha/ \0  

The stresses oij are connected with the effective elastic deformations hij by the formulas 

~ii = P8E/Ohii, P = ~ exp (--hn--h2,--h33)~ 

o r ,  a t  t h e  p r i n c i p a l  a x e s  

~i = pOE/Ohi, p = p0exp (--hl--h2--h3), 

E = E ( h l ,  h a ,  ha ,  S) i s  t h e  d e n s i t y  o f  t h e  i n t e r n a l  e n e r g y  ( t h e  e q u a t i o n  o f  s t a t e ) ,  The t e m p -  
e r a t u r e  i s  c a l c u l a t e d  u s i n g  t h e  f o r m u l a  T = E s .  The v a l u e s  o f  q i j  a r e  c a l c u l a t e d  u s i n g  t h e  
f o r m u l a s  

h~ - -  hj r -~hl -2hi - 

where ~i~ = U~U~j. 
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The parameter of the plasticity L in the plastic region can depend on all the invariants 
of the stresses and on the temperature. The elastic region is separated out in the following 
manner: L = O, if 

or 

h = ~ [ ( h i -  h,) 2 "l- ( h 2 -  hs)'-}" (h3 - -hi )2]  1/2 < ' h ,  --  const,; 

dh~ dh~ dh s 
(L~ -- l~) ~- + (La, --/=~)-~f + (L~, -- l~a:)-~ < O. 

The values of Z i are expressed in terms of L and the equation of state. For an equation of 
state of the form 

we have 

,( 
E (h,, h~, hs, " S) = E ~ (p, S) + B (p) ~ hi - -  3 

t==1 

The propagation of the waves of small perturbations is described using characteristic 
surfaces. The equation of the normal to the characteristics in a system of equations con- 
nected with the principal axes of the stresses for the system (I) is written in [i], If we 
designate by (T, ~,, ~2, ~s) the vector of the normal to the characteristic surface, then, 
the equation of the characteristic of the normals, corresponding to the propagation of acous- 
tical waves, has the form 

det (Q~  - -  A ) , =  O~ 

where ~ = T + u ~a; A is the acoustical matrix: 

The modules of Li~ Mi, Pi are expressed in terms of derivatives of the equation of state and 

the parameter of the plasticity L. 

It is obvious that, if we write the acoustical matrix in the case where the principal 
axes of the stresses do not coincide with the coordinate axes, then, its structure becomes 
complicated, as well as the formulas for calculation of the modules, into which the elements 
of the matrix of the rotation U will now enter. 

We note that, if the vector of the normal to the characteristic surface (T, ~,, ~2, ~3) 
is known, then, the characteristic surface (the surface of the propagation of the waves of 
small perturbations) r x~, x2, xs) = const is determined by the equation 

The acoustical matrix A for different types of media is assumed to be positively de- 
fined. This occurs, e.g., for all anisotropic elastic media, and means that small perturba- 
tions are propagated with nonzero velocities. 

For the equations under discussion here, it is found that, at some surfaces E(~,, ~2, 
~3) = const, the matrix A may degenerate, i.e., there is an eigenvalue ~2 = O. This means 
that, at some surface ~(x~, x2, x3) = const, the velocity of one quasltransverse wave (a 
shear wave) is equal to zero. 

As an illustration of this, let us consider a two-dimensional unsteady-state system of 
equations, obtained from (i) by some linearization. We postulate that all the sought func- 
tions depend on two spatial variables, x = x, and y = x2. We shall consider the processes 
without taking account of temperature effects, excluding the equation for the entropy and 
the dependence of the equation of state on the entropy (E = E(h~, h2, h3)). We assume that 
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the principal values of h i of the effective elastic deformations are small, and thust 

qu = ( t / 2 ) (ou  + ~)~)~ ~ 4= i. 

We assume also that thevelocities and their gradients are small, so that expressions of 
form of uctBUk/~X a can be discarded. We represent the matrix U in the form 

( e o s q )  sinq) / 
U = k _ s i  n q) cos q~/' 

here 

the 

r = cos ~ r --  sin r cos q~ (Ov/Ox + Ou/Oy) + sin ~ r 
r = sin ~ ~pOu/Ox + sin r cos ~(Ov/Ox + Ou/Oy) + cos ~ q~Ov/Oy,~ 
r = sin q~ cos r --  Ov/Oy) + cos ~ ~OtdOy --  sin ~ ~Ov/Ox,z 
r = sin ~p cos r --  Or~@) --  sin~r + cos ~ q~Ov/Ox. 

The connection between the stresses ~ii and the effective elastic deformations hij is given 
in the form of Hooke's.law:. .~ k(h~x + h=a + haa)~.. + 2uh~ ij' In this case, ~ = ia = 
~a = L/3. After the sxmplxfzca~xons made, the system ~) assumes the form 

poOu/Ot = O(~ll/Ox + O(~l~lOy, poOv/Ot = O~l/Ox + O(~/cOy,~ 
- - =  [( t .  ~ )ou t ov ~ . Oh~lot ( i  - -  L) t - -  -~ sm 2r  ~ + -~ sin ~ 2q) ~v - -  "5 sm 2q) cos 2 r  

•  ' L(Ou.  Ov (Ou Ov~ "ssin2q~cos2q~(~-~. + ou -~ sin- 2q) \~x - -  ~v] + ~y)'; 

a h ~ 2 - - ( l ~ L ) [ ~  s i n ~ 2 z p O u d t  ~ + (1 - -  "5~ sln'22 r176 -fit sm2q~cos2q) ( ~  + o ~ ) ] .  at, 

! (ou o~) 1 .  2 (o~ o~) ~ . (o~ ou) 

ot = . g L  ~ + ~ ,  

,, , [+  , ou) . 0 )1 0h12 --~ ( l  - -  L sin ~ 2(9 ~ ~ - -  "5 sm 2( 9 cos 2q~ ~z 
Ot 

t . o~ _ @ + "5 cos" , + "5 sm 2q~ cos 2q~ b-:x "q~ ~ z  ~- 

(2) 

where qij = k(hlt + has + haa)6ij + 2~hij. 

It can be shown that if, in the equations for hij we set L = 0, then, we obtain the 

equations of the linear theory of elasticity 

Ohll/Ot = Ou/Ox, Oh2~/Ot = Ov/Oy, Oh33/Ot = O, Ohl2/Ot = (Ou/Oy+Ov/Ox)/2. 

The r e g i o n s  o f  e l a s t i c i t y  a r e  s e p a r a t e d  b y  t h e  i n e q u a l i t i e s  

h = ~-~ [( x~ - -  he2) 2 + (h,~ - -  h3a) ~ + (has - -  hn) ~ + 6h12h2t]x/~ < h .  

or ~ oii - -  ~ + 2 

The parameter L(0 s L s i) characterizes the hardening of the medium with plastic deforma- 
tions. In this case, system (2) is written in the form 

poOu/Ot = Oo~JOx + Oo~J@, poOvlOt = Ocs~/Ox + O(~s2/Oy,, 

ah,. l (au . or) 1 . [au av~ 1 ~ a(~ v av) a"--/-=T ~ , - t - ~  + T s i n 2 ~ q ) ~ - - ~ v l + T s i n 2 q ) c o s 2 q ~  + ~ ,  

at 3 \az + ~ - -  -5 sin~ 2(t) 7z - -  ~ - -  "5 sin 2q~ cos  2q~ ~v + ' 

(3) 
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( ohl  ( ) ) Ohs.~ __ t Ou . ~ t O u _ _  Ov . 1 ~ [Su  Or, 

where oij = k(h,, + hs~ + haz)~ij + 2Bhij. 

If we consider the steady-state system arising from (3), i.e,, if we delete the deriva- 
tives with respect to t, we obtain the system 

8~11/8X "~- ~O'lzl~y = 0, O(YZ1/OX + 8(Yo2/Sy = 0, OUI~x "~ 8U/Oy = 0,, 

sin 2 r  - -  Ov /Oy)  -f- cos 2 ,p (Ou /Oy  + Ov/Ox)  = O,  

if it is supplemented b y  the relationships 

~ 1  = (l:t COS~ (P -~- (Y~ s in2 q~, G~2 = (l~ s i n  ~ r q-  ~ cos ~ % 

~ = (r - -  z~) sin ~p cos % ( z n - -  ~r~) 2 -5.4~22 = 4k ~, 

where k is the yield point, we obtain the classical equations of the theory of plasticity 
[5]. We note that a partial case of system (3) was proposed in [3]. 

We write the equation of the normals to the characteristics for system (3). For this 
purpose, we rewrite the equations for the velocities in the form 

Ou ~ -5 2~t 8h** ~ 8h~2 ~, Ohss .2tt 8h~2 

Ov _ 2jx Oh~ s 4- ~ Ohu ~ -5 2~t 0h22 ~ Ohas 

while the equations for h.. are left without change. 

For calculation of the characteristics, it is convenient touse a method, used, for ex- 
ample in [i], which consists in the following: we differentiate the equations for u and v 
once again with respect to t, and substitute into them the equations for hij, differentiated, 

as necessary, with respect to x or y. If we denote by (~, ~, ~2) the vector of the normal 
to the characteristic surface, then, the equation of the characteristics of the normals has 
the form 

det (~eI - -  A) = 0,  
where 

(K = I + 2B13). 
with ~ + ~ # 0 

An 

= ~0 9 o An ~ --~ sin 4~p~,~2 + cos ~-r 

(4) 

It can be shown that the matrix A is negatively defined. In actual fact, 

i 2 cos 2qD~) ~] A n  = ~o [ K ~  4-. t~ (sin 2 q ~  -4- > 0, 

A, ,  = ~, [it (cos 2qvSa - -  sin 2r ~ q- K ~ ]  > 0, 

det  A = ~ [cos ~ 2r - -  2sin 4 ~ t ~  + 2 (sin 2 2r - -  cos 4r t] t~ 
Po 

q- 2sin 4qD~g q- cos '  r = [2sin 2 r  - -  cos 2%0 ( ~  ~ 1 2 / >  0. . -- ~'~/J 

Consequently, Eq. (4) has real nonnegative roots T 2, 

The determinant of the matrix A reverts to zero with 2 sin 2~ffi- cos 29(~ ~ ~) = 
0, i.e., with ~z = (i _+ sin 2~o)~I. 
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If we denote ~ = --(8 + ~/4), then, the equations of the surfaces, at which det A = 0, 
have the form 

cos 0~1+ sin 0~, = 0, sin 8~1-- cos 0 ~  = 0. (5)  

These equations coincide with the equations of the slip lines of the theory of plasticity [5] 

dy = - - c t g  0dx,, dy = tg Odx. 

Thus, Eq. (4) 

~-- (An+ A~2)~2+ de* A = 0 

with the conditions (5) has the roots 

= 0, = At;+ = + 
P0 

Consequently, at the lines of slip, the velocity of the quasitransverse waves reveres to zero, 
while the velocity of the quasilongitudinal waves is equal to (K + ~)/po. 

We note that, with L < i,: the acoustical matrix corresponding to the system (2) does 
not have lines of degeneracy. The characteristic equation for this case, at the principal 
axes, is written out in [i], 

We now write the acoustical matrix, describing the propagation of small perturbations 
in a plastic medium for the case of a plane stressed state [5], The equations for this case 
are obtained from system (3), in which one of the equations for h**, h22, has is replaced by 
the algebraic equation 

o33 = ~ ( h n +  h::-+- h33 ) ~- 2Mha3 = O. 

Omitting the calculations, we immediately write the result. The equation of the charac- 
teristics of the normals has the form 

det (x2I - -  A) = 0, 

w h e r e  

2K ~ , 
= ~ ~ ~ V- ~ (sin 2r § Cos 2qD~2) 2 > 0, 

/ 2K ) 
---- sin" 2~ ~ poA2z ~ cos 9' 2%o~ - -  ~t sin 4q>~z + ~t [>. ~ ~ 

9 ~ , 2K ~2 .~  0 = ~t (cos 2 q ~  --: sin . q ~ ) -  v- ~t ~ s~ I -  , 

poA~ = poA~l = - ~ s i n 4 q ~  + ~ X~ ! cos4cp ~ o . - -  ~ ~ ran" 4 q ~ ,  

det A - -  po ~ (/.2~K-4- 2tt) [2sin 2 t ~ "  - -  c~ 2q~ ( ~  - -  ~ ) ] z  >~ 0" 

The lines of degeneration of the matrix A are found to be the same 

~ = (l _ sin 2~)~.  

This is in agreement with the fact that the lines of the slip for plane deformation and for 
a plane stressed state are exactly the same. 
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